Conspecific Plasticity and Invasion: Invasive Populations of Chinese Tallow (Triadica sebifera) Have Performance Advantage over Native Populations Only in Low Soil Salinity
نویسندگان
چکیده
Global climate change may increase biological invasions in part because invasive species may have greater phenotypic plasticity than native species. This may be especially important for abiotic stresses such as salt inundation related to increased hurricane activity or sea level rise. If invasive species indeed have greater plasticity, this may reflect genetic differences between populations in the native and introduced ranges. Here, we examined plasticity of functional and fitness-related traits of Chinese tallow (Triadica sebifera) populations from the introduced and native ranges that were grown along a gradient of soil salinity (control: 0 ppt; Low: 5 ppt; Medium: 10 ppt; High: 15 ppt) in a greenhouse. We used both norm reaction and plasticity index (PIv) to estimate the conspecific phenotypic plasticity variation between invasive and native populations. Overall, invasive populations had higher phenotypic plasticity of height growth rate (HGR), aboveground biomass, stem biomass and specific leaf area (SLA). The plasticity Index (PIv) of height growth rate (HGR) and SLA each were higher for plants from invasive populations. Absolute performance was always comparable or greater for plants from invasive populations versus native populations with the greatest differences at low stress levels. Our results were consistent with the "Master-of-some" pattern for invasive plants in which the fitness of introduced populations was greater in more benign conditions. This suggests that the greater conspecific phenotypic plasticity of invasive populations compared to native populations may increase invasion success in benign conditions but would not provide a potential interspecific competitive advantage in higher salinity soils that may occur with global climate change in coastal areas.
منابع مشابه
Chinese Tallow Trees (Triadica sebifera) from the Invasive Range Outperform Those from the Native Range with an Active Soil Community or Phosphorus Fertilization
Two mechanisms that have been proposed to explain success of invasive plants are unusual biotic interactions, such as enemy release or enhanced mutualisms, and increased resource availability. However, while these mechanisms are usually considered separately, both may be involved in successful invasions. Biotic interactions may be positive or negative and may interact with nutritional resources...
متن کاملGeographic distribution of genetic variation among native and introduced populations of Chinese tallow tree, Triadica sebifera (Euphorbiaceae).
PREMISE OF THE STUDY Invasive plants often display genetically determined variation in patterns of growth and resource allocation between native and introduced genotypes, as well as among genotypes within different regions of the introduced range. We examined patterns of genetic variation within and among native and introduced populations of the tetraploid Chinese tallow tree (Triadica sebifera...
متن کاملLower resistance and higher tolerance of invasive host plants: biocontrol agents reach high densities but exert weak control.
Invasive plants often have novel biotic interactions in their introduced ranges. Their defense to herbivory may differ from their native counterparts, potentially influencing the effectiveness of biological control. If invasive plants have decreased resistance but increased tolerance to enemies, insect herbivores may rapidly build up their populations but exert weak control. Moreover, resource ...
متن کاملSpecificity of extrafloral nectar induction by herbivores differs among native and invasive populations of tallow tree.
BACKGROUND AND AIMS Invasive plants can be released from specialist herbivores and encounter novel generalists in their introduced ranges, leading to variation in defence among native and invasive populations. However, few studies have examined how constitutive and induced indirect defences change during plant invasion, especially during the juvenile stage. METHODS Constitutive extrafloral ne...
متن کاملAn experimental test of the EICA hypothesis in multiple ranges: invasive populations outperform those from the native range independent of insect herbivore suppression
The success of invasive plants may reflect environmental differences in their native and introduced ranges including both abiotic and biotic conditions, such as release from aboveground herbivory. However, in response to these novel conditions, plants from invasive populations may have higher growth rates and lower defense levels compared to those in the native range. This may contribute to the...
متن کامل